Индикатор разряда аккумулятора шуруповерта на TL431. Простой индикатор заряда и разряда аккумулятора Индикаторы разряда акб светодиодные схема

Индикатор разряда аккумулятора шуруповерта на TL431. Простой индикатор заряда и разряда аккумулятора Индикаторы разряда акб светодиодные схема

Литий-ионные аккумуляторы довольно чувствительны к плохому обращению. Современные зарядные устройства могут анализировать их состояние, в процессе заряда, но совсем не лишним будет поставить одно простое дополнение на одном транзисторе и 2-х светодиодах, которое независимо от самого устройства покажет реальное сотояние АКБ. На рисунке далее показана принципиальная схема для определения напряжения Li-Ion аккумуляторов.

Схема LED индикатора напряжения литий-ионных аккумуляторов

При падении напряжения питания ниже 2,6 В, ток через базу транзистора падает и он закрывается. Светодиод led1 загорается, а led2 выключен. Когда напряжение превышает 2,6 вольта, транзистор начинает открывается и замыкает светодиод led1, одновременно зажигается led2. Это условие означает, что батарея не требует подзарядки.

Но учтите, что пределы напряжения сильно зависят от типа и цвета выбранных светодиодов. Стандартный красный светодиод имеет прямое падение напряжения 1.7 В; зеленый светодиод около 2,1 В.

В данной конструкции используются красные светодиоды с прямым напряжением приблизительно 1,6 вольта при 2 мА. Другие индикаторы могут потребовать подбор номиналов, например поставить диод Шоттки вместо 1n4148. Даже белые или синие светодиоды с 3 прямого напряжения можно ставить в некоторых случаях.

Таблица наглядно показывает, какие индикатор имеет состояния работы. Устройство потребляет незначительный ток, поэтому можно рассчитывать на долгий срок службы аккумулятора, если конечно он не находится на хранении. Вы можете встроить такой указатель напряжения в зарядный или тестовый модуль. Добавление стабилитронов последовательно с светодиодами делает эту схему простого индикатора подходящей и для более высоких уровней напряжения.

Индикатор разряда аккумулятора предназначен для получения оперативного предупреждения о разряде аккумуляторной батареи, что поможет защитить вас от многих проблем. Предлагаемая схема достаточно проста, а вся регулировка заключается в выставление порога срабатывания переменным резистором для включения светодиодной индикации.

Чтобы максимально упростить самодельную конструкцию, информация о степени разряда батареи поступает по принципу светодиодного столбика, то есть чем выше напряжение на батареи, тем больше светодиодов загорается. Нижний уровень отмечается красным светодиодом (верхний по схеме), на максимальное напряжение указывает нижний зеленый светодиод. Полное отсутствие свечения говорит о сильной критическом разряде аккумулятора.

В основе конструкции лежат четыре компаратора операционного усилителя LM324, каждый из них контролирует определенный уровень напряжения.

Опорное напряжение в 5 вольт для всех четырех компараторов идет со стабилитрона и сопротивления R6.

Если на прямом входе ОУ потенциал будет меньше потенциала на его инверсном входе, на выходе компаратора присутствует низкий логический уровень и светодиод не горит. Если опорное напряжение превысит потенциал на противоположном входе компаратор переключается, и светодиод загорится. Для каждого компаратора установлен свой персональный уровень, который настраивается сопротивлением делителя на резисторах R1-R5.

Вариант этой конструкции, но уже на операционном усилителе LM 339 подойдет для аккумуляторов с выходным напряжением 6 или 12 вольт.

В арсенале отечественных микросхем имеется серия КР1171, которые специально разработаны для контроля снижения напряжения питания. Вот и используем ее для контроля напряжения в аккумуляторной батареи.

Малый потребляемый ток в режиме «Вык.» позволяет встраивать данную конструкцию в устройства с непрерывным контролем напряжения аккумуляторной батареи. При этом индикатор можно подключить до выключателя питания устройства, напрямую к клеммам аккумуляторной батареи. Для переделки данной схемы индикатора на другое напряжение достаточно использовать соответствующую микросхему серии КР1171 и подобрать резистор R1 для нового напряжения. Исключение составляет только микросхема КР1171СП20, т. к. ее пороговый уровень 2В, а генератор на микросхеме К561ЛА7 не работает.

Для достижения минимальных размеров можно вместо динамика использовать миниатюрный излучатель. C помощью сопротивления R6 можно регулировать громкость звука.

Данная конструкция рассчитана на напряжение аккумуляторной батареи от 6 до 24 вольт.

Схема состоит из делителя напряжения на резисторах R1 R2, первый транзистор реагирует на уменьшение напряжения ниже заданного значения, а электронный ключ на втором транзисторе, через стоковую цепь запускает свepxъяркий светодиод.

При подключении схемы к аккумуляторной батареи, напряжение котopoгo необходимо контролировать, на затворе первого транзистора появляется напряжение положительной полярности, регулируемое резистором R2. Если оно выше порогового - транзистор открыт, сопротивление его канала не выше десятка Ом, поэтому напряжение на стоке второго транзистора VТ2 стремится к нулю и он закрыт, светодиод соответственно не горит, сигнализируя о том, что напряжение аккумуляторной батареи в норме. При снижении напряжения до порогового уровня, при котором напряжение на затворе первого транзистора становится ниже порогового, он закрывается, сопротивление его канала резко возрастает и напряжение на стоке стремится к значению напряжения питания. При этом открывается транзисторный ключ и светодиод загорается, говоря о недопустимой степени разряда аккумуляторной батареи.

На транзисторах VT2, VT3 построен триггер Шмитта, на VT1 - модуль запрета его срабатывания. В коллекторную цепь VT3 включен индикатор HL1, размещенный на приборной панели. В горячем состоянии нить накала индикатора обладает сопротивление в районе 50 Ом. Сопротивление холодной нити индикатора в несколько раз ниже. Поэтому транзистор VT3 выдерживает бросок тока в коллекторной цепи до уровня 2,5 А.

Напряжение бортовой сети за минусом напряжения на стабилитроне VD2 через делитель R5-R6 поступает на базу VT2. Если оно выше 13,5 В, триггер Шмитта переключается и транзистор VT3 закрыт, а HL1 не светится.

Самая распространённая проблема водителей – это отсутствие в автомобиле на панели с приборами. Такая проблема создаёт некоторый дискомфорт, в связи с тем, что водитель поздно замечает, разряженный аккумулятор, особенно если большой показатель . Стоит обратить внимание, что собирается такой прибор для индикации довольно легко.

Измерять заряд аккумулятора можно и самому с помощью вольтметра. На сегодняшний день вольтметры очень дорогие, а так, как он не сильно то и обходим, потому что для нас важно лишь значение, до которого может доходить заряд.

Стоит обратить внимание на то, что прибор, с помощью которого будет измеряться заряд аккумулятора можно сделать своими руками и без вольтметра.

Ниже приведена система для создания , в качестве индикатора взята светодиодная лампа. Когда напряжение падает и заряд аккумулятора низкий, загорается светодиодная лампа, что и служит индикатором к подзарядке.

Глядя на схему, можно убедиться в том, что собрать её будет несложно. Любой элемент системы легко купить. Как транзисторы можно использовать:

  • КТ 315Б
  • КТ 3102
  • S 9012
  • S 9014
  • S 9016

В качестве светодиодной лампы, можно приобрести любую, главное, чтобы её рабочее напряжение было в пределах 15–20 В.

Главный и незаменимый элемент системы – это переменный резистор R2, с его помощью устанавливается предел, при котором срабатывает индикатор, несмотря на то, что в схеме написано взять его с 1,5 кОм, необходимо брать более мощный в пределах 20 кОм. Потому что если брать R1= 20 кОм, то такого сопротивления будет мало, для того чтобы открыть ключ VT1.

Если брать аккумулятор с обыкновенным зарядом в 12 В и больше, то транзистор VT1 будет открывать и шунтировать индикаторную светодиодную лампу HL1. Когда напряжение аккумулятора падает, то VT1 будет со временем уменьшаться, пока не закроется, после его отключения, откроется VT2 и загорится светодиодная лампа HL1, это и служит сигналом о том, что заряд аккумулятора низкий. Для такой схемы, возможно, подключить любой порог сигнализирования.

В качестве платы можно использовать материал с ПК или старого телевизора. По размерам такая система маленькая и удобная.

Чтобы настроить систему, необходим прибор для питания с , с помощью которого будет регулироваться резистор, и выставляться пределы для срабатывания сигнализации.

В случае необходимости можно сделать несколько таких схем с разными порогами чувствительности, для более точного измерения.

Простой автоусилитель моноблок на TDA1560Q Внешний USB-разъем в автомагнитоле



TL431 — трехногая микросхема, которую часто называют «управляемым стабилитроном», ведь с ее помощью можно получать любое напряжение в диапазоне 2,5…36 вольт. Кроме того, ее можно использовать как компаратор на напряжение 2,5 вольта:

— если на входе меньше, чем 2,5 вольта — ток через выходной транзистор микросхемы не идет;
— если на входе больше, чем 2,5 вольта — транзистор открыт, и ток идет через него.



Очень похоже на транзистор в ключевом режиме, не? И даже нагрузку — те же индикаторные светодиоды — можно включать точно так же, как в транзисторный ключ.


Готовая схема на 7 вольт (для двух последовательно соединенных Li-ion батарей, где 8,4 вольта при полном заряде); для повышения точности R2 можно сделать из постоянного на 47k и подстроечного на 10k . Вывод 1, проводя аналогию с n-p-n транзистором — «база», вывод 2 — «эмиттер», вывод 3 — «коллектор» (условно, конечно, стабилитрон — не транзистор). Пока на «базе» напряжение выше, чем 2,5 вольта — микросхема открыта, и ток идет через нее. По мере разряда батареи напряжение снижается, и как только с делителя пойдет меньше, чем 2,5 вольта — транзистор микросхемы закроется, и ток пойдет через светодиод.

При желании можно собрать эту же схему на резисторах 10k и 5k6 — она будет работать, но станет чуть более прожорливой. Так что для экономии лучше взять резисторы побольше номиналом. Повторюсь: индикатор разряда батареи не должен сильно ее разряжать .

R3 задает ток через светодиод-нагрузку и выходной транзистор микросхемы. Подбирается хотя бы и по желаемой яркости свечения.


Красным светодиодам для включения надо маленькое напряжение (начиная с 1,5 В), так что они могут светиться даже тогда, когда TL431 , по идее, открыта и шунтирует их. Решение — последовательно поставить второй светодиод или диод 1N4007. Или использовать светодиоды с более высоким напряжением включения — зеленые, синие, белые.

Как же плотно вошли в нашу жизнь Li-ion аккумуляторы. То, что они применяются почти во все микропроцессорной электронике это уже норма. Так и радиолюбители уже давно взяли их себе на вооружение и используют в своих самоделках. Способствую этому значительные плюсы Li-ion аккумуляторов, такие как небольшой размер, большая емкость, большой выбор исполнений различных ёмкостей и форм.

Самый распространенный аккумулятор имеет марку 18650 его напряжение составляет 3,7 В. Для которого я у буду делать индикатор разряда.
Наверное, не стоит рассказывать, как вредна для аккумуляторов кране низкая их разрядка. Причем для аккумуляторов всех разновидностей. Правильная эксплуатация аккумуляторных батарей продлит их жизнь в несколько раз и сэкономит ваши деньги.

Схема индикатора зарядки


Схема довольно универсально и может работать в диапазоне 3-15 вольт. Порог срабатывания можно настроить переменным резистором. Так что устройство можно использовать почти для любых аккумуляторов, будь то кислотные, никелево-кадмиевые (nicd) или литий-ионные (Li-ion).
Схема отслеживает напряжение и как только оно упадет ниже заданного уровня – загорится светодиод, сигнализируя о низкой разрядке батареи.
В схеме используется регулируемый (ссылка где брал). Вообще этот стабилитрон является очень интересным радиоэлементом, который может существенно облегчить жизнь радиолюбителям, при построении схем, завязанных на стабилизации или пороговом срабатывании. Так что берите его на вооружение, особенно при постройке блоков питания, схем стабилизации токов и т.п.
Транзистор можно заменить любым другим NPN структуры, отечественный аналог КТ315, КТ3102.
R2- регулирует яркость светодиода.
R1 – переменный резистор номиналом от 50 до 150 кОм.
Номинал R3 можно прибавить до 20-30 кОм для экономии энергии, если использован транзистор с высоким коэффициентом передачи.
Если у вас не окажется регулируемого стабилизатора TL431, то можно использовать проверенную советскую схему на двух транзисторах.


Порог срабатывания задается резисторами R2, R3. Вместо них можно запаять один переменный, чтобы дать возможность регулировки и уменьшить количество элементов. Советские транзисторы можно заменить на BC237, BC238, BC317 (КТ3102) и BC556, BC557 (КТ3107).


Схему можно собрать на плате или навесным монтажом. Одеть термоусадочную трубку и обдуть термофеном. Приклеить на двухсторонний скотч к тыльной стороне корпуса. Я лично установил данную плату в шуруповерт и теперь не до вожу его аккумуляторы до критического разряда.
Так же параллельно резистору со светодиодом можно подключить зуммер (пищалку) и тогда вы точно будете знать о критических порогах.

просмотров